A self-limiting switch based on translational control regulates the transition from proliferation to differentiation in an adult stem cell lineage.
نویسندگان
چکیده
In adult stem cell lineages, progenitor cells commonly undergo mitotic transit amplifying (TA) divisions before terminal differentiation, allowing production of many differentiated progeny per stem cell division. Mechanisms that limit TA divisions and trigger the switch to differentiation may protect against cancer by preventing accumulation of oncogenic mutations in the proliferating population. Here we show that the switch from TA proliferation to differentiation in the Drosophila male germline stem cell lineage is mediated by translational control. The TRIM-NHL tumor suppressor homolog Mei-P26 facilitates accumulation of the differentiation regulator Bam in TA cells. In turn, Bam and its partner Bgcn bind the mei-P26 3' untranslated region and repress translation of mei-P26 in late TA cells. Thus, germ cells progress through distinct, sequential regulatory states, from Mei-P26 on/Bam off to Bam on/Mei-P26 off. TRIM-NHL homologs across species facilitate the switch from proliferation to differentiation, suggesting a conserved developmentally programmed tumor suppressor mechanism.
منابع مشابه
High neuronal/astroglial differentiation plasticity of adult rat hippocampal neural stem/progenitor cells in response to the effects of embryonic and adult cerebrospinal fluids
Hippocampal neural stem/progenitor cells (hipp-NS/PCs) of the adult mammalian brain are important sources of neuronal and gial cell production. In this study, the main goal is to investigate the plasticity of these cells in neuronal/astroglial differentiations. To this end, the differentiation of the hipp-NS/PCs isolated from 3-month-old Wistar rats was investigated in response to the embryonic...
متن کاملفاکتورهای نسخهبرداری کلیدی موثر در تمایز سلولهای بنیادی مزانشیمی: مقاله مروری
Stem cells are undifferentiated biological cells that can differentiate into more specialized cells and divide (through mitosis) to produce more stem cells (self-renew). In mammals, there are two broad types of stem cells: embryonic stem cells, which are isolated from the inner cell mass of blastocysts, and adult stem cells, which are found in various tissues. Mesenchymal stem cells (MSCs) are ...
متن کاملThe effect of amniotic membrane extract on umbilical cord blood mesenchymal stem cell expansion: is there any need to save the amniotic membrane besides the umbilical cord blood?
Objective(s): Umbilical cord blood is a good source of the mesenchymal stem cells that can be banked, expanded and used in regenerative medicine. The objective of this study was to test whether amniotic membrane extract, as a rich source of growth factors such as basic-fibroblast growth factor, can promote the proliferation potential of the umbilical cord mesenchymal stem cells. Materials and ...
متن کاملThe Potential of Menstrual Blood-Derived Stem Cells in Differentiation to Epidermal Lineage: A Preliminary Report
BACKGROUND Menstrual blood-derived stem cells (MenSCs) are a novel source of stem cells that can be easily isolated non-invasively from female volunteered donor without ethical consideration. These mesenchymal-like stem cells have high rate of proliferation and possess multi lineage differentiation potency. This study was undertaken to isolate the MenSCs and assess their potential in differenti...
متن کاملStudy of telomerase activity, proliferation and differentiation characteristics in umbilical cord blood mesenchymal stem cells
In recent years, considerable advances have been made in the field of regenerative medicine. Unlikeembryonic stem cells, which pose the problems of ethical concerns and cause severe immunological reactions as well as neoplasma formation after transplantation, umbilical cord blood is a primitive source ofmesenchymal stem cells that covers the benefits of both embryonic and adult stem cells. It h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell stem cell
دوره 11 5 شماره
صفحات -
تاریخ انتشار 2012